
Wings for Pegasus: A Semantic Approach to Creating
Very Large Scientific Workflows

Yolanda Gil1, Varun Ratnakar 1, Ewa Deelman1,
Marc Spraragen1, and Jihie Kim1

1 Information Sciences Institute, University of Southern California
4676 Admiralty Way, Marina del Rey CA 90292, United States

{gil, varunr, deelman, marcs, jihie}@isi.edu

Abstract. Scientific workflows are being developed for many domains as a
paradigm to manage complex scientific computations. In our work, we are
challenged with efficiently generating and validating workflows that contain
large amounts (hundreds to thousands) of individual computations to be
executed over distributed environments. We describe a new approach to
workflow creation and validation that uses semantic representations to describe
complex scientific applications in a data-independent manner, then
automatically generates workflows of computations for given data sets, and
finally maps them to available computing resources. We have implemented this
approach in Wings and used it to create workflows of thousands of
computations, which are submitted to the Pegasus mapping system for
execution over grid computing environments.

Keywords: Workflow generation, semantic grid, scientific workflows, grid
workflows, workflow editors.

1 Introduction

Scientific workflows are emerging as an effective paradigm to represent and
manage complex scientific applications [10,19]. Scientific communities are sharing
resources including data repositories, services, instruments, and computing resources
[2,3,9,22,24]. Workflows provide an effective representation that captures how these
very heterogeneous resources can be configured and assembled for a wide variety of
purposes, and that facilitates the management of their execution in such distributed
environments. As sharing of data and resources increases in scientific communities,
the creation and management of workflows is central to the future of scientific
analysis and computations.

Some scientific applications, notably in bioinformatics, are cast as workflows of
web services in distributed environments. These applications require support to
discover, describe, compose, and execute workflows that are mapped to web services
available in the execution environment. Several workflow environments are
successfully support scientists today in creating and managing these service-based
workflows [18,21].

Many other scientific applications do not use workflows composed of services.
Instead, workflows are composed of jobs that perform computations on remote hosts
in distributed environments through remote job submissions, utilizing data that reside
in catalogs that are replicated in the execution environment, and creating data
products that need to be stored back in those repositories. The computations are
nodes in the workflow, and the links in the workflow represent the data flow among
computations. Data is typically available in files, and each file is described with
metadata attributes [23] that describe its properties (e.g., its creation date, the
instrument used for collection, or the computation that created it, and other domain-
specific attributes). Examples of workflow systems of this kind are Pegasus
[6,7,8,4,5,13] and Askalon [27], and more recently Kepler [18] as well. We refer to
these workflows as computational workflows.

Creating and validating these computational workflows is a very challenging
enterprise. Some of our prior work has addressed the design of intelligent workflow
editors that assist users in creating valid workflows using AI planning techniques and
semantic representations of workflow constituents [16]. However, in many scientific
applications there is a need to scale up to data sets of thousands of elements.

The goal of our work is the creation and execution of large scientific workflows
that include in the order of hundreds or thousands of computations. This paper
presents a novel approach that exploits semantic representations of workflows to
express repetitive computational structures in a compact manner, describe
underspecified data collections, and process these representations to create workflows
that can be then mapped to available resources for execution. We have implemented
this approach in Wings, and integrated it with Pegasus into an end-to-end workflow
creation and execution system.

We begin with a detailed motivation showing the nature of the complexity of
creating large workflows of computations. After reviewing related work, we present
our approach and its implementation in Wings. We finalize with a discussion and
plans for future work.

2 Motivation: Creating Very Large Scientific Workflows

In our work, we distinguish three distinct stages in the creation of workflows [11].
The first stage is to create workflow templates, which specify the high-level structure
of the workflow in a data-independent representation. The second stage is to create
workflow instances (or workflows for short), which specify what data is to be used in
the computation. Workflow instances are independent of execution resources, that is,
they can be mapped to any execution environment by binding tasks to available
resources. The third stage is to create an executable workflow, which specifies the
data replicas to be used and their locations, the hosts where computation will occur,
and the appropriate data movements across distributed locations. These three stages
allow us to manage the complexity of workflow creation by making the process more
modular.

The later stage of creation of executable workflows is done by Pegasus
[6,7,8,4,5,13]. Pegasus performs automated mapping of workflows to execution

resources and the management of their execution in distributed grid environments.
Pegasus is now a production-level workflow mapping and execution engine that is
being used in a variety of scientific applications and executes workflows in small,
medium, and large size grid environments such as the Teragrid and the Open Science
Grid [2,9]. What Pegasus users are currently lacking are general-purpose mechanisms
to create and validate their very large workflows.

Many scientific applications require the processing of dataset elements one at a
time with identical computations. Figure 1 shows on the left an example from our
collaboration with the Southern California Earthquake Center (SCEC) [20] and on the
right an example of a workflow from statistical natural language processing [17]. The
first workflow conducts the same kind of simulation for all ruptures of all faults being
considered. It can be iterated again for several sites. Computation results are usually
re-compiled in later steps to provide a summary view back to the scientist. The
second workflow reflects the parallel processing of a large corpus by breaking it up
into smaller chunks. The results from each chunk are re-compiled in later steps. Both
examples illustrate the regular structure that appears in many scientific workflows for
processing large data sets. Similar kinds of structures have been shown, for example,
in workflows for creating image mosaics of astronomical data [7] and for finding
clusters of galaxies in the Sloan Digital Sky Survey [1]. In the coming years,
workflows will continue to grow in data set size as well as complex interleaving of
creation and execution. Providing assistance in creating and managing these large
workflows will be not only desirable but absolutely necessary.

An on-going problem is that these kinds of workflows are created using ad-hoc
scripts that specify each individual job, create meaningful identifiers for all new data
products of the workflow, and weave the dataflow connections among the individual
jobs. The iterations across data sets are managed implicitly in the scripts. If the
workflow needs to be changed, or a new workflow needs to be created with some of
the same components, new scripts have to be written. This process is not very
practical and is highly prone to error, so it does not scale well as the workflow size
increases. The validation of the resulting workflow is a challenge, mostly done by
hand. There should also be a way to specify that two separate collections of data used
as input to the workflow should have the same cardinality, whatever that cardinality
is, in order for the workflow to be valid.

There are important issues regarding the coupling of the workflow creation and the
workflow execution. Ideally, the workflow should be completely specified in terms
of the kinds of computations to be performed and the kinds of data to be created, but
be independent of the choice of hosts and other resources allocated for execution. It
is desirable that the same workflow can be mapped at execution time to the resources
that are available at that time, so this information should not be included in the
workflow. The Pegasus workflow mapping engine performs that kind of mapping,
binding data descriptions to one of many possible replicas, selecting hosts to execute
the computations, moving data to where computation will occur, and moving data
products to data repositories. This mapping engine can do a better job at reservation
and provisioning of resources if the entire workflow structure is known ahead of
execution. It is useful for this reason to have the ability to generate as complete a
description of the workflow and its anticipated computations and data ahead of the
execution process.

(a)

(b)

Fig. 1. Some examples of scientific workflows with hundreds or thousands of computations and
data products, illustrating their regular structure in processing subsets of the data one at a time.

…

…

WSJ-2001

KR-09-05

SGTSGT

…

…
SGTSGT SGTSGT

Execution requirements also influence the nature of the workflows. Because many
failures can arise when executing each workflow component (insufficient memory,
full file system, code bugs, etc), the system must manage the recovery from those
failures and figure out what remains to be executed in the workflow. Workflows that
have control constructs such as conditional branching and iteration are harder to
manage because they require the execution system to have some persistent
representation of their distributed execution state. For these reasons, the workflows
that we consider are structured as directed acyclic graphs (DAGs) without control
constructs.

In summary, our goal is to support the creation and execution of scientific
workflows that include hundreds or thousands of computational steps. This requires:

1. creating workflow descriptions that orchestrate large amounts of computations
while ensuring that that are valid in that they respect data and computation
constraints,

2. handling data sets with many elements and manage the creation of iterative
substructures in the workflow that process each of those elements,

3. generating appropriate metadata descriptions for all the new data sets created
during execution, and specifically full elaboration of workflow descriptions are
required in order to submit for execution so the system can detect pre-existing
intermediate data and avoid unnecessary recomputation.

3 Approach

To support the creation and validation of very large workflows, we have developed
a new approach to represent and reason about workflows and their data so that:

- workflow templates and instances are semantic objects, where all their
components, links, data requirements, and data products are represented in
ontologies with appropriate constraints among them,

- data collections are specified with intensional descriptions in workflow
templates and extensional descriptions in workflow instances, with
appropriate relationships as a data set is concretely specified during the
creation of a workflow instance from a workflow template,

- intensional descriptions of node collections that offer appropriate
abstractions for the repetitive structure of the workflows at the template
level that can support reasoning about expanding those structures at the
instance level once the data sets are specified

There are several important benefits of this approach. By making the description
of a workflow template very compact through intensional descriptions of data sets and
node sets, it is easier to create the basic structure of the workflow and validate it with
smaller data sets. By specifying declaratively data collections and their constraints

and properties we can validate the input data as well as intermediate data products of
the workflow.

The next section describes our current implementation of this approach and
illustrates the main ideas through examples.

4 Wings for Pegasus

Wings implements the approach outlined above by supporting the creation of
workflow templates and instances, which are then submitted to Pegasus to create
executable workflows. Figure 2 gives an overview of the system. Notice that
workflow templates and instances can be created by different users. Experienced
scientists can create templates that comply with widely-accepted analyses that reflect
valid scientific methodologies. Less experienced users can perform many analyses
with different kinds of data by creating and executing workflow instances. A
Composition Analysis Tool (CAT) assists users during template creation by checking
that the template is valid and making suggestions based on the constraints and
definitions in the ontologies. An early version of this tool can be found in [16].

Fig. 2. Overview of the Wings/Pegasus Architecture.

In Wings, workflow templates and instances are semantic objects and so are their
components (nodes), the links among them, and the data generated by workflows. All
are accessible in a central repository, although we envision more distributed
approaches in future versions (e.g., [23]). We use OWL-DL as the representation
language, and Jena as the underlying reasoner.

Template
Selection

Workflow
Template

Data
Selection

Workflow
Instance

Workflow
Libraries

Data
Repositories

Application
Components

Ontologies:
Domain terms,

Component types,
Workflow Products

- Preexisting data collections
- Workflow execution results

“Show me
workflows
that prune
rules”

“Run this workflow
with the
WSJ-04 data set”

“Validate this workflow
based on the
component specs”

STUDENT

SEASONED NL
RESEARCHER

Template
Creation

ALGORITHM
DEVELOPER

-Workflow templates specify
 complex analyses sequences
- Workflow instances specify data

“Here is a new
Rule pruning code,
takes in a set of rules,
is compiled for MPI”

Component
Specification

Executable
WorkflowPegasus

WINGS

- Specifies data
 requirements
- Specifies execution
 requirements

Grid

(OWL)

Data is represented as individual files that can be grouped into file collections.
Nested collections are also supported. All the items within a collection must have a
common type. The core definitions of the file ontology are:

• File: Represents the basic File class.
• DataCollection is used to represent a collection of objects (either files or other

collections). These are the subtypes of DataCollection:
• CollOfDataCollection: A collection of data collections.
• FileCollection: A collection of Files

Computations (codes) are represented as workflow components. They can process
several inputs and several outputs (each with its own unique id). A given input or
output can take an entire data set. Components are organized in hierarchies of
component types. The core definitions of the component ontology are:

• ComponentType : This is the top-level class of component types. A
Component is an instance of this class and corresponds to an actual code that
can be run.

• ComponentCollection: This represents a collection of components. It uses the
property hasComponentType to specify the type of components in this
collection.

ComponentCollection is used in nodes to indicate iterations over file collections.

Nodes in a workflow represent the component to be executed. A node in a
workflow template can contain a single component or a component collection. A
component collection is an intensional set of components, and will be expanded with
concrete jobs when workflow instances are created. The definitions of nodes, and
components are as follows:

• Node: Represents a node in the workflow. Uses a property hasComponent to
specify the component that the node contains. Its range can be a any subclass
of ComponentType or a ComponentCollection

A link in a workflow template carries data, and the type of data being carried must
be consistent with the output data type of the origin node and the input data type of
the destination node. Consequently, a link can carry single files or file collections.
Links are defined as follows:

• Link: Represents a generic link in the workflow. It uses the properties
hasDestinationNode and hasOriginNode to identify the destination and
origin nodes respectively of the link. It also uses the properties
hasDestinationFileDescription and hasOriginFileDescription to indicate the
specific input/output for the components in the origin/destination nodes that
this link connects. It has the following subclasses:

o InputLink: These links do not have an origin node
o InOutLink: These links must have an origin node and a destination

node.
o OutputLink: These links do not have a destination node.

Workflow templates are defined as including nodes that can be collections and
links that can carry collections as well. This is done using the property hasFile of a
link. Because we need to assert properties of these data collections, we need to
represent them in the a-box as instances. Therefore, the data collections carried in the
links are represented with Skolem instances, that is, instances that stand in for the
actual data to be used in the instance. Properties and constraints can be asserted of
these Skolem instances, which is important to validate the workflow. This requires
that the entire workflow template is described with instances. Figure 3 shows an
example of a workflow template, which corresponds to the following description:

<wflns:WorkflowTemplate rdf:ID=”WT3”>
 <wflns:hasLink rdf:resource=”#InputFCSG_to_Cone”/>
 <wflns:hasLink rdf:resource=”#InputFCSK_to_Cone”/>
 <wflns:hasLink rdf:resource=”#Inout_from_Cone_to_Cmany”/>
 <wflns:hasLink rdf:resource=”#InputFSY_to_Cmany”/>
 <wflns:hasNode rdf:resource="#Cone"/>
 <wflns:hasNode rdf:resource="#Cmany"/>
</wflns:WorkflowTemplate>
<wflns:InputLink rdf:ID=”InputFCSG_to_Cone”>
 <wflns:hasDestinationNode rdf:resource=”#Cone”/>
 <wflns:hasDestinationFileDescription rdf:resource=”&clib;#D1”/>
 <wflns:hasFile><FileCollection rdf:ID=”#FCSG”/></wflns:hasFile>
</wflns:InputLink>
<wflns:InputLink rdf:ID=”InputFCSK_to_Cone”>
 <wflns:hasDestinationNode rdf:resource=”#Cone”/>
 <wflns:hasDestinationFileDescription rdf:resource=”&clib;#D2”/>
 <wflns:hasFile><FileCollection rdf:ID=”#FCSK”/></wflns:hasFile>
</wflns:InputLink>
<wflns:InOutLink rdf:ID=”Inout_from_Cone_to_Cmany”>
 <wflns:hasOriginNode rdf:resource=”#Cone”/>
 <wflns:hasDestinationNode rdf:resource=”#Cmany”/>
 <wflns:hasOriginFileDescription rdf:resource=”&clib;#D3”/>
 <wflns:hasDestinationFileDescription rdf:resource=”&clib;#DC11”/>
 <wflns:hasFile><FileCollection rdf:ID=”#FCSZ”/></wflns:hasFile>
</wflns:InOutLink>
<wflns:InputLink rdf:ID=”InputFSY_to_Cmany”>
 <wflns:hasDestinationNode rdf:resource=”#Cmany”/>
 <wflns:hasDestinationFileDescription rdf:resource=”#D12”/>
 <wflns:hasFile><File rdf:ID=”#FSY”/></wflns:hasFile>
</wflns:InputLink>
<wflns:Node rdf:ID=”Cmany”>
 <wflns:hasComponent rdf:resource=”&clib;Cmany”/>
</wflns:Node>
<wflns:Node rdf:ID=”Cone”>
 <wflns:hasComponent>
 <clns:ComponentCollection>
 <clns:hasComponentType rdf:resource=”&clib;Cone”/>
 </clns:ComponentCollection>
 </wflns:hasComponent>
</wflns:Node>

Note that the number of elements in the collection is not specified since it is
different for every instance to be created and depends on the size of the data set to be
processed. Other constraints and properties of the set can be specified at the template
level.

Fig. 3. An Example of a workflow template in Wings, shown on the right. A workflow
instance from this template is shown on the left. Also shown is a sketch of the components.

So far, these simple manipulations of data collections have been sufficient. We are
investigating additional constructs from parallel programming languages [28], similar
to those available in Taverna [21].

Workflow instances are specified by binding the inputs of a workflow template to
specific data sets. Here is an example of a workflow instance for the template above:

<wflns:WorkflowInstance rdf:ID=”WI3”>
<wflns:hasWorkflowTemplate rdf:resource=”&template;#WT3/>
<wflns:hasBinding rdf:resource=”#Binding0”/>
<wflns:hasBinding rdf:resource=”#Binding1”/>
<wflns:hasBinding rdf:resource=”#Binding2”/>
<wflns:hasBinding rdf:resource=”#Binding3”/>

</wflns:WorkflowTemplate>
<wflns:Binding rdf:ID=”Binding0”>

<wflns:hasSkolemFile rdf:resource=”&template;FCSG”/>
<wflns:hasLibraryFile rdf:resource=”&flib;CG1234567/>

</wflns:Binding>
<wflns:Binding rdf:ID=”Binding1”>

<wflns:hasSkolemFile rdf:resource=”&template;FCSK”/>
<wflns:hasLibraryFile rdf:resource=”&flib;CK1234567/>

</wflns:Binding>
<wflns:Binding rdf:ID=”Binding2”>

<wflns:hasSkolemFile rdf:resource=”&template;FCSZ”/>
<wflns:hasLibraryFile rdf:resource=”&flib;CZ1234567/>

</wflns:Binding>
<wflns:Binding rdf:ID=”Binding3”>

<wflns:hasSkolemFile rdf:resource=”&template;FSY”/>
<wflns:hasLibraryFile rdf:resource=”&flib; Y1234567/>

</wflns:Binding>

Wings can validate the creation of this instance by the user. Both collections
provided as inputs for links L1 and L2 must have the same amount of elements. They
must also comply with any constraints defined in the template.

Wings takes the descriptions of the input data and propagates them to create
descriptions for all the data products of the workflow. For example, the collection in
link L3 in the example is now known to have the same number of elements as the one
in the link L1.

Note that this is an abbreviated specification of a workflow instance. Wings must
then expand it to specify all the nodes that are to be executed. The algorithm for
creating fully expanded workflow instances is shown in Figure 4.

C-one

G1

Z1

D1 D2

D3

C-many

C-one

Z2

C-one

Z88

…

…

…

K1 G2 K2 G88 K88

L1 L2

L3

C-manyN2

D12

L4

FS-Y

Y1

C-one

D1

D3

D2 F1

C-many

F1

D13

F1DC11 D12

F1F1F1DC11

FCS-G FCS-K

FCS-Z

C-one

NC1

R1

Workflow Instance

Components

Workflow Template

CreateAbbreviatedWorkflowInstance
 Inputs: WorkflowTemplate tw, InputLinks Ilinks
 Output: Binding set for all Skolems in tw
 Assign ILinks to LinksToProcess.
 While LinksToProcess is not empty
 Remove one from LinksToProcess and assign it to L1.
 Let F1 be the file Skolem that is associated with the link L1.
 If F1 isn't already bound (check Bindings Map)
 If L1 is an Input link,
 Get file metadata from the user or file server
 Create new file in the file Library, FL1
 Bind File F1 to FL1, (assign F1 => FL1 in the Binding set)
 If L1 is an InOut Link or Output Link,
 Generate metadata automatically via propagation.
 Create new file in the Library, OFL1
 Bind File F1 to OFL1, (assign F1 => OFL1 in the Binding set)
 If all the links that L1 depends on have been processed
 For each link L2, that is dependent on L1, Add L2 to LinksToProcess
 Assign destination node of link L1 to N1.
 If all the inputs to N1 have been bound,
 Add all links with N1 as the origin node to LinksToProcess

CreateWorkflowInstance
 Inputs: WorkflowTemplate wt, Bindings bindings
 Output: WorkflowInstance wi
 For each Node N1 in the template wt,
 For each input file IF1 to N1,
 Get the Library File IBF1 from bindings, and replace IF1 as input to N1
 Do similarly for each output OF1
 Get the component C1, contained by N1.
 If C1 is a collection,
 Get number of items n in the collection from the number of items in input/output files for N1.
 Iterate n times, iteration i :
 Create job J1, with id = concatenate name of N1 with 'i'
 For each input IF1 to node N1,
 if IF1 is a Collection, then assign 'i-th' element of IF1 as an input to J1 (iteration)
 otherwise assign IF1 itself as an input to J1 (constant)
 Do similarly for each output OF1
 If C1 is not a collection,
 Create job J1, with id = name of N1.
 For each input IF1 to node N1,
 if IF1 is a Collection, then assign 'i-th' element of IF1 as an input to J1 (iteration)
 otherwise assign IF1 itself as an input to J1 (constant)
 Do similarly for each output OF1

Fig. 4. The algorithms to generate abbreviated and elaborated workflow instances in Wings.

Throughout the creation of the workflow instances, Wings propagates metadata
information for all new data products. The metadata handling aspects of Wings are
described in a separate paper [29] (available from URL provided in the citation),
which describes this same algorithm in terms of how new metadata is generated for
all new data products of the workflow.

Pegasus takes a very specific format for workflow instances. It is called a DAX
(Directed Acyclic Graph in XML), and it is a directed acyclic graph of jobs where

each job consists of code and file names for the inputs and outputs of the job. It also
takes specifications of which data must be registered, since some intermediate data
may be of temporary utility only but others may be useful to the user. These are
specified as defaults in the workflow template. Wings generates a workflow in DAX
format, here is an excerpt of a very small one generated by Wings as an example:

<!-- part 1: list of all files used -->
 <filename file="file.f.a" link="input"/>
 <filename file="file.f.b1" link="inout"/>
 <filename file="file.f.b2" link="output"/>
<!-- part 2: definition of all jobs (at least one) -->
 <job id="ID000001" name="removeDups" version="1.0" level="3">
 <argument>-a top -T60 -i <filename file="file.f.a"/> -o
<filename file="file.f.b1"/> </argument>
 <uses file="file.f.a" link="input" dontRegister="false"
dontTransfer="false"/>
 <uses file="file.f.b1" link="output" dontRegister="true"
dontTransfer="true" temporaryHint="true"/>
 </job>
 <job id="ID000002" name="countWords" version="1.0" level="2">
 <argument>-a left -T60 -i <filename file="file.f.b1"/> -o
<filename file="file.f.b2"/> -p 0.5</argument>
 <uses file="file.f.b1" link="input" dontRegister="false"
dontTransfer="false" temporaryHint="true"/>
 <uses file="file.f.b2" link="output" dontRegister="true"
dontTransfer="true" temporaryHint="true"/>
 </job>
<!-- part 3: control-flow dependencies (empty for single jobs) -->
 <child ref="ID000002">
 <parent ref="ID000001"/>
 </child>

We have used Wings to create workflows for several applications. One kind of
workflow is for rule pruning, as part of a statistical machine translation process. The
template is shown in Figure 5. We created workflows of several dozen nodes that
were then mapped by Pegasus and submitted for execution. A more recent
application is seismic hazard analysis, where a workflow template of two dozen nodes
was elaborated into a workflow instance of almost 8,000 nodes and sent to Pegasus
for execution. This latter application of Wings is very complex and is described in
detail in a separate submission [29] (available from URL provided in the citation).

The template in Figure 5 corresponds roughly to the structure of the example
workflow shown in Figure 1-b.

5 Related Work

In our own prior work on the Composition Analysis Tool (CAT) [16] we
addressed the validation of workflows and user assistance through semantic workflow
representations, but we focused on smaller workflows of dozens of steps that did not
handle large data sets.

Fig. 5. A template created in Wings for pruning rules for a machine translation system.

Several approaches to creating workflows for scientific applications are widely
used, prominently Taverna and Kepler [18,21]. Semantic descriptions are used to
assist users in selecting workflow components and in ensuring that the final workflow
is valid. However, their focus is on composing workflows from web services. In our
work, we create workflows that are composed of computations and are executed over
distributed grid computing environments [2,9]. The workflows that are created with
these tools are complex but they handle data sets of smaller sizes. Kepler has some
facilities to execute workflows in grid computing environments, where steps such as
gridftp for data transfer are included in the workflow. We separate the execution
concerns such as data movement and resource allocation from the higher-level
specification of the workflow, leaving the former to Pegasus to handle.

Workflow languages, such as BPEL and FLOWS, support iteration and parallel
constructs that can handle computation over data sets. However, they focus on
compositions of web services rather than the workflows of computations that we need
to support. In addition, these languages do not support the representation of semantic
constraints and other information about metadata. Workflow editors for these
languages help users create workflows through graphical manipulations, but do not
include facilities for validating workflows according to semantic constraints. The
Virtual Data Language (VDL) [26] allows users to create workflows that are
composed of computations over large data sets. Users specify workflows portions
that are processed by Chimera to assemble a complete abstract workflow. The
complete file names must be spelled out in the initial specification. In recent work,
data sets are represented explicitly and handled by indicating iteration constructs, in
that sense VDL is moving closer to providing a scripting language designed to
support workflow specification. Semantic descriptions of data and other constraints
imposed by the workflow structure are not supported in the language.

A common way for users to orchestrate complex computations over large data sets
is to create workflows through portals [3]. These portals have hardcoded workflows
and default settings, and ask users to provide scenario-specific data that are then
transformed programmatically into the sequences of computations to be performed.

6 Conclusions

We have described a new approach to creating and validating very large scientific
workflows that handle data sets through computational steps that are executed in
distributed grid environments. Our approach uses semantic descriptions of workflow
templates and workflow instances where all their constituents are semantic objects
that are described with properties and workflow level constraints. Once a workflow
template is created and validated by an experienced user, it is easy for more junior
scientists to create sophisticated analyses simply by specifying input data for pre-
defined templates. The system ensures that the input data specified is appropriate
given the definitions in the workflow template, and automatically generates a
workflow instance that can be mapped to execution resources. We have implemented
this approach in the Wings system, and is fully integrated with the Pegasus workflow
mapping system. Augmenting workflows with semantic descriptions also enables
searches of previous instances or templates in cases where a “similar” analysis is
sought. A scientist may want to find out if someone else has come across a particular
problem or used a particular methodology. The explicit representations of the
workflow templates and instances support result reproducibility. Templates provide a
means of systematically and diligently describing the high-level analytical steps
involved. Workflow instances created from those templates are valid since they
follow established methodology (as described in the template) and the data complies
with the constraints expressed in the workflow.

Acknowledgments. We gratefully acknowledge our many collaborators, in particular from the
Southern California Earthquake Center (SCEC) and the Machine Translation research group at
USC’s Information Sciences Institute for sharing with us their challenging workflows. We
would also like to thank Gaurang Mehta and Mei Hsu for their assistance in running Wings
workflows in Pegasus. This research was funded by a grant from the National Science
Foundation EAR-0122464 and by internal research funds from the Information Sciences
Institute.

References

1. J. Annis, Y, Zhao, J. Voeckler, M. Wilde, S. Kent, and I. Foster. Applying Chimera Virtual Data
Concepts to Cluster Finding in the Sloan Sky Survey. Proceedings of Supercomputing 2002,
Baltimore, MD, November, 2002.

2. Berman, F., Hey, A. J.G., and Fox, G. “Grid Computing: Making The Global Infrastructure a Reality”
John Wiley & Sons, 2003.

3. BIRN: Biomedical Informatics Research Network, http://www.nbirn.net/.
4. Blythe, J., Deelman, E., Gil, Y., Kesselman, C. “Transparent Grid Computing: A Knowledge-Based

Approach”, Proceedings of the 15th Annual Conference on Innovative Applications of Artificial
Intelligence (IAAI), August 12-14, 2003, Acapulco, Mexico.

5. Blythe, J., Deelman, E., Gil, Y., Kesselman, C., Agarwal, A., Mehta, G., Vahi, K. “The Role of
Planning in Grid Computing”, Proceedings of the 13th International Conference on Automated
Planning and Scheduling (ICAPS), June 9-13, 2003, Trento, Italy.

6. Deelman, E., Blythe, J., Deelman, E., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K.,
Lazzarini, A., Arbree, A., Cavanaugh, R., and Koranda, S. “ Mapping Abstract Workflows onto Grid
Environments”, Journal of Grid Computing, Vol. 1, No. 1, 2003.

7. Ewa Deelman, Jim Blythe, Yolanda Gil, Carl Kesselman, Scott Koranda, Albert Lazzarini, Gaurang
Mehta, Maria Alessandra Papa, and Karan Vahi. "Pegasus and the Pulsar Search: From Metadata to
Execution on the Grid". PPAM Applications Grid Workshop (AGW), Czestochowa, Poland, 2003.

8. Ewa Deelman, Jim Blythe, Yolanda Gil, Carl Kesselman, Gaurang Mehta, Sonal Patil, Mei-Hui Su,
Karan Vahi, and Miron Livny. "Pegasus: Mapping Scientific Workflows onto the Grid". Across Grids
Conference, Nicosia, Cyprus, 2004.

9. Foster, I., and Kesselman, C. “The Grid: Blueprint for a New Computing Infrastructure”, 2nd
Edition, Morgan Kaufmann, 2004.

10. Gannon, D., Deelman, E., Taylor, I., and Shields, M. (Eds) “Workflows in e-Science”, Springer
Verlag, forthcoming.

11. Gil, Y. “Workflow Composition: Semantic Representations for Flexible Automation”, in “Workflows
for e-Science”, Deelman, E., Gannon, D. Shields, M., and Taylor, I. (Eds), Springer Verlag, 2006.

12. Gil, Y. and Ratnakar, V. “Multi-Agent Systems and Grid Services: Towards Robust Continuous
Distributed Problem Solving”. Internal Project Report, October 2003.

13. Yolanda Gil, Ewa Deelman, Jim Blythe, Carl Kesselman, and Hongsuda Tangmurarunkit. “Artificial
Intelligence and Grids: Workflow Planning and Beyond”, IEEE Intelligent Systems, January 2004.

14. Yolanda Gil, Varun Ratnakar, and Ewa Deelman. “Augmenting Metadata Catalogs with Semantic
Representations”, Short paper at the Fourth International Semantic Web Conference (ISWC-05),
Galway, Ireland, November 7-10, 2005.

15. Yolanda Gil, Varun Ratnakar, and Ewa Deelman. “Virtual Metadata Catalogs: Augmenting Metadata
Catalogs with Semantic Representations”, International Provenance and Annotation Workshop
(IPAW'06), Chicago, IL, May 3-5, 2006.

16. Jihie Kim, Marc Spraragen, and Yolanda Gil. “An Intelligent Assistant for Interactive Workflow
Composition”, In proceedings of the 2004 International Conference on Intelligent User Interfaces
(IUI), Madeira Islands, Portugal, January 2004.

17. K. Knight and D. Marcu. Machine Translation in the Year 2004. Proceedings of the 2005 IEEE
International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2005.

18. B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger-Frank, M. Jones, E. Lee, J. Tao, Y. Zhao,
Scientific Workflow Management and the Kepler System. In Concurrency and Computation: Practice
& Experience, Special Issue on Scientific Workflows, to appear, 2005.

19. Ludaescher B. and Goble, C. Special Issue on Scientific Workflows, ACM SIGMOD Record,
September 2005.

20. P. Maechling, H. Chalupsky, M. Dougherty, E. Deelman, Y. Gil, S. Gullapalli, V. Gupta, C.
Kesselman, J. Kim, G. Mehta, B. Mendenhall, T. Russ, G. Singh, M. Spraragen, G. Staples, and K.
Vahi. “Simplifying Construction of Complex Workflows for Non-Expert Users of the Southern
California Earthquake Center Community Modeling Environment”. In ACM SIGMOD Record,
special issue on Scientific Workflows, 2005.

21. T. Oinn, M. Greenwood, M. Addis, M. Nedim Alpdemir, J. Ferris, K. Glover, C. Goble, A. Goderis,
D. Hull, D. Marvin, P. Li, P. Lord, M. R. Pocock, M. Senger, R. Stevens, A. Wipat and C. Wroe.
Taverna: Lessons in creating a workflow environment for the life sciences accepted for publication in
Concurrency and Computation: Practice and Experience Grid Workflow Special Issue

22. Open Science Grid, www.osg.org.
23. G. Singh, S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Manohar, S. Patil, L.

Pearlman. A Metadata Catalog Service for Data Intensive Applications. SuperComputing, 2003.
24. TeraGrid, www.teragrid.org.
25. Tuchinda, T., Thakkar, S., Gil, Y., and Deelman, E. “Artemis: Integrating Scientific Data on the

Grid”, Proceedings of the 16th Conference on Innovative Applications of Artificial Intelligence
(IAAI), San Jose, CA, July 25-29, 2004.

26. Y. Zhao, J. Dobson, I. Foster, L. Moreau and M. Wilde. A Notation and System for Expressing and
Executing Cleanly Typed Workflows on Messy Scientific Data. ACM SIGMOD Record, special
issue on Scientific Workflows, 2005.

27. M. Wieczorek, R. Prodan and T. Fahringer. Scheduling of Scientific Workflows in the ASKALON
Grid Environment. ACM SIGMOD Record, special issue on Scientific Workflows, 2005.

28. E. Deelman, M. Hall, Y. Gil, K. Lerman, and J. Saltz, "A Systematic Approach to Composing and
Optimizing Application Workflows,'' In Proceedings of the 2005 Workshop on Patterns in High
Performance Computing, May, 2005.

29. Kim, J., Gil, Y., and Ratnakar, V. Semantic Metadata Generation for Large Scientific Workflows.
Submitted to the International Semantic WebConference, 2006, available at
http://www.isi.edu/ikcap/scec/papers/Wings-metadata-reasoning.pdf.

